JBTST IV 2008, problema 4

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

JBTST IV 2008, problema 4

Post by Marius Mainea »

Sa se determine cea mai mare valoare reala a numarului k astfel incat \( (a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-k)\geq k \), oricare ar fi numerele reale \( a, b,c\geq 0 \) cu \( a+b+c=ab+bc+ca \).
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Notez \( a+b+c= S \)
Astfel inegalitatea devine:
\( S( \sum_{} {\frac {1}{S-a}} - k) \geq k \) \( \Leftrightarrow \) \( \frac {S}{S+1}(\sum_{} {\frac {1}{S-a}}) \geq k \)

Dar: \( \sum_{} {\frac {1}{S-a}} = \frac {S(S+1)}{S^2-abc} \) \( \Rightarrow \) \( \frac {S^2}{S^2-abc} \geq k \)

Asadar \( k_{max} = \frac {S^2}{S^2-abc} \)

Ceva mai concret ar fi: \( \frac {S^2}{S^2-abc}= \frac {S^2}{(a+b+c)(ab+bc+ca)-abc} =

\frac {S^2}{(S^3- \sum_{} {a^3})/3} = \frac {3S^2}{S^3 - \sum_{} {a^3}} \)
\( \geq \frac {27}{8S} \) \( = \)

\( = \frac {27}{8(a+b+c)} \) deoarece \( \sum_{} {a^3} \geq \frac {1}{9}S^3 \)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Inegalitati”