Congruenta clasica

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Congruenta clasica

Post by Vlad Matei »

Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Show must go on!
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Re: Congruenta clasica

Post by Filip Chindea »

Vlad Matei wrote:Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Fie \( p \) prim cu \( p \equiv 3 \pmod{4} \). Deci polinomul \( f = X^2 + 1 \) este ireductibil in \( \mathbb{Z}_p[X] \) si fie \( K = \mathbb{Z}_p[X]/(f) \).

Utilizand faptul binecunoscut ca \( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) = X^{p - 1} - 1 \) (in \( \mathbb{Z}_p[X] \)), rezulta ca in \( K \)

\( \prod_{k \in \mathbb{Z}_p} (k^2 + 1) = \prod_{k \in \mathbb{Z}_p} (k^2 - X^2) = (-1)^{p+1} \left( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) \right)^2 = 4 \), si totul e clar.

PS. As vrea sa vad si eu solutia aia clasica (unde? suntem la nivel de IMO aici, iar astfel de exercitii nu prea ar fi adecvate). Cu exceptia "traducerii" rezolvarii de mai sus, desigur.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”