Congruenta clasica
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Vlad Matei
- Pitagora
- Posts: 58
- Joined: Wed Sep 26, 2007 6:44 pm
- Location: Bucuresti
Congruenta clasica
Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Show must go on!
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Re: Congruenta clasica
Fie \( p \) prim cu \( p \equiv 3 \pmod{4} \). Deci polinomul \( f = X^2 + 1 \) este ireductibil in \( \mathbb{Z}_p[X] \) si fie \( K = \mathbb{Z}_p[X]/(f) \).Vlad Matei wrote:Fie \( p\equiv 3(mod \hspace{1mm} 4) \).Demonstrati ca \( \displaystyle \prod_{k=1}^{p}(k^{2}+1) \equiv 4 (mod \hspace{1mm} p) \).
Utilizand faptul binecunoscut ca \( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) = X^{p - 1} - 1 \) (in \( \mathbb{Z}_p[X] \)), rezulta ca in \( K \)
\( \prod_{k \in \mathbb{Z}_p} (k^2 + 1) = \prod_{k \in \mathbb{Z}_p} (k^2 - X^2) = (-1)^{p+1} \left( \prod_{k \in \mathbb{Z}_p^{\ast}} (X - k) \right)^2 = 4 \), si totul e clar.
PS. As vrea sa vad si eu solutia aia clasica (unde? suntem la nivel de IMO aici, iar astfel de exercitii nu prea ar fi adecvate). Cu exceptia "traducerii" rezolvarii de mai sus, desigur.
Life is complex: it has real and imaginary components.