Fie \( n \geq 4 \) natural si \( a_1, ... ,a_n \in R_+ \) astfel incat \( \sum_{i=1}^{n} {{a_i}^2} = 1 \). Aratati ca:
\( \sum_{k=1}^{n} {\frac {a_k}{{a_{k+1}}^2 + 1} \) \( \geq \) \( \frac {4}{5} \) \( {(\sum_{k=1}^{n} {a_k \sqrt {a_k}})}^2 \) unde \( a_{n+1}=a_1 \)
TST III - 2002 Problema 2
Inegalitate cu suma patratelor 1
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Inegalitate cu suma patratelor 1
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)