Secvente de 0 si 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Secvente de 0 si 1

Post by Filip Chindea »

Fie un intreg \( n > 1 \). Sa se gaseasca secventele de \( n^2 + n \) numere \( a_j \in \{ 0, 1\} \) satisfacand

\( a_{i + 1} + \cdots + a_{i + n} < a_{i + n + 1} + \cdots + a_{i + 2n} \), \( \forall i \in \overline{0, n^2 - n} \).

[ IMO Shortlist 2007, C1 ]
Life is complex: it has real and imaginary components.
Post Reply

Return to “Combinatorica”