Notam cu \( Q(n) \) numarul numerelor libere de patrate mai mici ca \( n \). Prelungim aceasta functie pentru \( x>0 \), adica
\( Q(x)=\sharp\{k \in \mathbb{N}^{\ast} \ : \ k \leq x, p^2 \nmid k\} \)
Sa se demonstreze ca pentru \( x>0 \) avem
\( Q(x)=\frac{6}{\pi^{2}}x+O(\sqrt{x}) \).
Observatie. Sigur, se poate demonstra, daca notam \( R(x)=Q(x)-\frac{6}{\pi^2}x \), ca \( |R(x)|\leq 0,5\sqrt{x}, \forall x\geq 8 \).
Numarul numerelor libere de patrate
Moderator: Filip Chindea
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Numarul numerelor libere de patrate
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
In primul rand sa "demascam" aceasta \( Q \):
\( Q(x) = \sum_{n \le x} \mu^2(x) = \sum_{d \le \sqrt{x}} \mu(d) \left[ \frac{x}{d^2} \right] \) (exercitiu!),
apoi expresia rezultata e egala cu
\( \sum_{d \le \sqrt{x}} \mu(d) \left( \frac{x}{d^2} + O(1) \right) = x \sum_{d \le \sqrt{x}} \frac{\mu(d)}{d^2} + O(\sqrt{x}) \),
deci in virtutea acestui topic este
\( \frac{6x}{\pi^2} + x \cdot O\left( \frac{1}{[\sqrt{x}] + 1} \right) + O(\sqrt{x}) = \frac{6x}{\pi^2} + O(\sqrt{x}) \). Astfel, aceste numere square-free au o densitate de \( \frac{6}{\pi^2} \), adica omniprezentul \( \frac{1}{\zeta(2)} \).
\( Q(x) = \sum_{n \le x} \mu^2(x) = \sum_{d \le \sqrt{x}} \mu(d) \left[ \frac{x}{d^2} \right] \) (exercitiu!),
apoi expresia rezultata e egala cu
\( \sum_{d \le \sqrt{x}} \mu(d) \left( \frac{x}{d^2} + O(1) \right) = x \sum_{d \le \sqrt{x}} \frac{\mu(d)}{d^2} + O(\sqrt{x}) \),
deci in virtutea acestui topic este
\( \frac{6x}{\pi^2} + x \cdot O\left( \frac{1}{[\sqrt{x}] + 1} \right) + O(\sqrt{x}) = \frac{6x}{\pi^2} + O(\sqrt{x}) \). Astfel, aceste numere square-free au o densitate de \( \frac{6}{\pi^2} \), adica omniprezentul \( \frac{1}{\zeta(2)} \).
Life is complex: it has real and imaginary components.