JBTST II 2008, Problema 3

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

JBTST II 2008, Problema 3

Post by Laurian Filip »

Fie \( n \in \mathbb{N}^* \) si numerele reale strict pozitive \( a_1,a_2,...,a_n \) cu proprietatea ca:
\( a_1+a_2+...+a_n=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2} \).

Sa se demonstreze ca pentru orice m=1,2,3,...n, exista m numere dintre cele date avand suma cel putin egala cu m.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Consideram \( f(x)=x-\frac{1}{x^2} \) care este concava si strict crescatoare.
\( f(1)=0=\sum f(a_i)\leq nf(\frac{\sum a_i}{n})\rightarrow \sum a_i\geq n \) si apoi ies toate.
n-ar fi rau sa fie bine :)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Aplicam CBS:\( \sum a_i=\sum \frac{1}{a_i^2}\geq \frac{1}{n}(\sum \frac{1}{a_i})^2\geq \frac{n^3}{(\sum a_i)^2} \) si de aici \( \sum a_i \geq n \)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Fie \( 1\leq m \leq n \) fixat. Presupunem ca oricare \( m \) numere din cele date au suma mai mica decat \( m \).
Atunci \( \sum_{X\subset \{1,...,n\}, |X|=m, j\in X}a_j< \left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \left(\matrix{n-1\\ m-1}\right)\sum_{i=1}^na_i<\left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \) \( \Rightarrow\sum_{i=1}^na_i<\frac{n!}{(n-m)!m!}\cdot \frac{(m-1)!(n-m)!}{(n-1)!}\cdot m=n \).

Din ce a fost scris mai sus e gata... :)
Post Reply

Return to “Algebra”