Fie \( n \in \mathbb{N}^* \) si numerele reale strict pozitive \( a_1,a_2,...,a_n \) cu proprietatea ca:
\( a_1+a_2+...+a_n=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2} \).
Sa se demonstreze ca pentru orice m=1,2,3,...n, exista m numere dintre cele date avand suma cel putin egala cu m.
JBTST II 2008, Problema 3
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Fie \( 1\leq m \leq n \) fixat. Presupunem ca oricare \( m \) numere din cele date au suma mai mica decat \( m \).
Atunci \( \sum_{X\subset \{1,...,n\}, |X|=m, j\in X}a_j< \left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \left(\matrix{n-1\\ m-1}\right)\sum_{i=1}^na_i<\left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \) \( \Rightarrow\sum_{i=1}^na_i<\frac{n!}{(n-m)!m!}\cdot \frac{(m-1)!(n-m)!}{(n-1)!}\cdot m=n \).
Din ce a fost scris mai sus e gata...
Atunci \( \sum_{X\subset \{1,...,n\}, |X|=m, j\in X}a_j< \left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \left(\matrix{n-1\\ m-1}\right)\sum_{i=1}^na_i<\left(\matrix{ n\\ m} \right)\cdot m\Rightarrow \) \( \Rightarrow\sum_{i=1}^na_i<\frac{n!}{(n-m)!m!}\cdot \frac{(m-1)!(n-m)!}{(n-1)!}\cdot m=n \).
Din ce a fost scris mai sus e gata...