Teorema Lomonosov

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Teorema Lomonosov

Post by Cezar Lupu »

Hai sa incepem aceasta sectiune cu o bomba: :)

Fie \( X \) un spatiu normat si \( A\in\mathcal{L}_{C}(X) \) (operator compact), \( A\neq O_{\mathcal{L}(X)} \). Atunci pentru orice \( B\in\mathcal{L}(X) \) care nu este scalar si comuta cu \( A \), exista \( Y\subset{X} \) propriu, \( Y \) inchis, invariant la orice \( \delta\in\mathcal{L}(X) \) care comuta cu \( B \).
Last edited by Cezar Lupu on Sun Jun 08, 2008 7:37 pm, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Mihai Berbec
Pitagora
Posts: 72
Joined: Fri Feb 29, 2008 7:27 pm
Contact:

Post by Mihai Berbec »

Teorema spune de fapt ca orice operator care comuta cu un operator compact are subspatii invariante si este adevarata pentru spatii Banach infinit-dimensionale. Demonstratia se gaseste in articolul lui Lomonosov, Invariant subspaces for operators commuting with compact operator, Funkcional Anal. i Priloien, 7:3(1973), pag 55-56 sau in V. Rundle - Linear Analysis si foloseste in mod esential teorema de punct fix a lui Schauder.
Post Reply

Return to “Analiza neliniara”