K algebric inchis in L => K(X) algebric inchis in L(X)

Post Reply
dede
Euclid
Posts: 34
Joined: Tue Oct 16, 2007 6:05 pm

K algebric inchis in L => K(X) algebric inchis in L(X)

Post by dede »

Daca \( K \subset L \) este o extindere de corpuri si \( K \) este algebric inchis in \( L \), atunci \( K(X) \) este algebric inchis in \( L(X) \).
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Polinomul \( T^2-X \) are radacina in L(X)?
"Greu la deal cu boii mici..."
dede
Euclid
Posts: 34
Joined: Tue Oct 16, 2007 6:05 pm

Post by dede »

Daca K(X) nu este algebric inchis, atunci nu este nici in L(X), oricare \( K \subset L \), deci nu e adevarat, corect?
Post Reply

Return to “Teorie Galois”