x^{p-1} divide (p-1)^x +1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

x^{p-1} divide (p-1)^x +1

Post by Wizzy »

Sa se determine toate perechile \( (x,p) \) de intregi pozitivi pentru care \( p \) este prim, \( x\leq 2p \) si \( x^{p-1} \) divide \( (p-1)^{x}+1 \).
Vrajitoarea Andrei
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Se pare ca am lasat-o suficient timp - mai intai, concursul: OIM 1991.

Evident, \( x = 1 \) iar \( (x, p) = (2, 2) \) verifica si presupunem \( x > 1 \) si \( p \ge 3 \). Evident \( x \) impar.
Din ideile extremale pe care le avem la dispozitie, fie \( r | x \) minimal, \( r > 1 \), deci prim. Din \( r | x^{p - 1} | (p - 1)^x + 1 | (p - 1)^{2x} - 1 \), \( (r, p - 1) = 1 \), \( m := ord_r(p - 1) | 2x \), \( m | r - 1 \), deci \( (m, x) > 1 \) ne conduce la \( r - 1 \ge m \ge r \), fals. Astfel, \( m | 2 \), \( r | (p-1)^2 - 1 = p(p-2) \), \( r | p - 2 \), \( r | 2 \), contradictie, deci \( r | p, r = p \). Astfel \( p | x \), \( x = p \). Deducem, pentru \( p \ge 5 \), \( p^3 | p^{p - 1} | (p - 1)^p + 1 = tp^3 - \frac{p - 1}{2} p^3 + p^2 \), fals. Ramane \( x = p = 3 \), iar singurele solutii, in afara de \( (1, p) \), sunt \( (2, 2) \) si \( (3, 3) \).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”