Postati aici diferite metode pentru calculul sumei \( \sum_{n\geq 1}\frac{1}{n^2} \).
Eu cunosc cel putin 4 pana acum... si sunt destul de interesante.
Diferite metode pentru calcularea unei sume...
Moderators: Mihai Berbec, Liviu Paunescu
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
-
Mihai Berbec
- Pitagora
- Posts: 72
- Joined: Fri Feb 29, 2008 7:27 pm
- Contact:
Suma respectiva poate fi obtinuta ca bonus urmand pasii de aici: http://mateforum.ro/viewtopic.php?t=1063
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Beni, eu stiu 17 demonstratii pentru seria lui Euler, \( \zeta(2)=\sum_{n=1}^{\infty}n^{-2}=\frac{\pi^{2}}{6} \). De exemplu, 14 dintre demonstratii le poti gasi aici. Pentru celalalte 3, daca esti curios o sa le postez in acest topic. 
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Eu am gasit una foarte interesanta, care foloseste teorema lui Tannery, pe care am postat-o tot aici la analiza reala.
Se poate demonstrat usor ca \( \frac{1}{\sin^2 x}=\frac{1}{4}\left(\frac{1}{\sin^2 (x/2)}+\frac{1}{\sin^2 \frac{x+\pi}{2}}\right) \).
Aplicam repetat aceasta identitate si obtinem
\( 1=\frac{1}{\sin^2\frac{\pi}{2}}=...=\frac{1}{4^n}\sum_{k=0}^{2^{n-1}-1}\frac{1}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}
}=\frac{2}{4^{n}}\sum_{k=0}^{2^{n-1}-1}\frac{1}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}}=\\
=\frac{8}{\pi^2}\sum_{k=0}^{2^{n-1}-1}\frac{\frac{(2k+1)^{2}\pi^2}{4^{n+1}}}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}\cdot }\frac{1}{(2k+1)^2} \).
Sa verificam acum ipotezele teoremei lui Tannery:
i) \( s(n) \) este suma noastra, care este finita.
ii) \( f_k(n)=\frac{\frac{(2k+1)^{2}\pi^2}{4^{n+1}}}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}\cdot }\frac{1}{(2k+1)^2}\to \frac{1}{(2k+1)^2}=j_k \) pentru \( n \to \infty \).
iii) fiecare \( f_k \) este majorata de \( \frac{3}{(2k+1)^2}=M_k \).
iv) \( \sum M_k \) e convergenta.
Deci \( 1=\lim_{n\to \infty}s(n)=\frac{8}{\pi^2}\sum_{k\geq 0}j_k=\frac{8}{\pi^2}\sum_{k\geq 0}\frac{1}{(2k+1)^2} \).
Deci \( \sum_{k\geq 0}\frac{1}{(2k+1)^2}=\frac{\pi^2}{8} \). De aici suma initiala se calculeaza simplu.
Se poate demonstrat usor ca \( \frac{1}{\sin^2 x}=\frac{1}{4}\left(\frac{1}{\sin^2 (x/2)}+\frac{1}{\sin^2 \frac{x+\pi}{2}}\right) \).
Aplicam repetat aceasta identitate si obtinem
\( 1=\frac{1}{\sin^2\frac{\pi}{2}}=...=\frac{1}{4^n}\sum_{k=0}^{2^{n-1}-1}\frac{1}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}
}=\frac{2}{4^{n}}\sum_{k=0}^{2^{n-1}-1}\frac{1}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}}=\\
=\frac{8}{\pi^2}\sum_{k=0}^{2^{n-1}-1}\frac{\frac{(2k+1)^{2}\pi^2}{4^{n+1}}}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}\cdot }\frac{1}{(2k+1)^2} \).
Sa verificam acum ipotezele teoremei lui Tannery:
i) \( s(n) \) este suma noastra, care este finita.
ii) \( f_k(n)=\frac{\frac{(2k+1)^{2}\pi^2}{4^{n+1}}}{\sin^2\frac{(2k+1)\pi}{2^{n+1}}\cdot }\frac{1}{(2k+1)^2}\to \frac{1}{(2k+1)^2}=j_k \) pentru \( n \to \infty \).
iii) fiecare \( f_k \) este majorata de \( \frac{3}{(2k+1)^2}=M_k \).
iv) \( \sum M_k \) e convergenta.
Deci \( 1=\lim_{n\to \infty}s(n)=\frac{8}{\pi^2}\sum_{k\geq 0}j_k=\frac{8}{\pi^2}\sum_{k\geq 0}\frac{1}{(2k+1)^2} \).
Deci \( \sum_{k\geq 0}\frac{1}{(2k+1)^2}=\frac{\pi^2}{8} \). De aici suma initiala se calculeaza simplu.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Da, Beni asta este una dintre cele 3 care nu se regasesc in survey-ul lui Robin Chapman. Ea a fost publicata in American Mathematical Monthly in anul 2002 de catre J. Hofbauer. 
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Pai da. Dintr-un AMM am luat-o si eu...
Probabil ca e aceeasi. Probabil ca inca una din celelalte e cu serii Fourier...
Last edited by Beniamin Bogosel on Wed May 28, 2008 6:57 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
101% sigur e acelasi.Beniamin Bogosel wrote:Pai da. Dintr-un AMM am luat-o si eu...Probabil ca e acelasi.
P.S. Vezi ca intr-un alt AMM, imediat dupa, James Harper mai da inca o demonstratie plecand de la o integrala si folosind Fubini.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.