Problema cauchy si functii continue

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Problema cauchy si functii continue

Post by Cezar Lupu »

Fie \( a(.), b(.):[0, \infty)\to\mathbb{R} \) continue, \( b(x)\leq 0, \forall x\geq 0 \) si \( f:\mathbb{R}^{2}\to\mathbb{R} \) astfel incat \( f(x, y)\leq a(x)y+b(x), \forall (x,y)\in\mathbb{R}^{2} \). Sa se arate ca problema Cauchy

\( \left{\begin{array}{c}
y\prime=f(x,y), x\geq 0\\
y(0)=0\end{array} \)


are solutie \( y:[0, \infty)\to [0, \infty) \) daca si numai daca \( b(x)=0 \) si \( f(x, 0)=0, \forall x\geq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Ecuatii diferentiale ordinare”