JBTST V 2007, Problema 2

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

JBTST V 2007, Problema 2

Post by Laurian Filip »

Sa se arate ca

\( \frac{x^{3}+y^{3}+z^{3}}{3}\ge xyz+\frac{3}{4}|(x-y)(y-z)(z-x)| \) ,

oricare ar fi numerele reale \( x,y,z \geq 0 \).

Viorel Vajaitu
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Avem
\( |(x-y)(y-z)(z-x)|=|x-y||y-z||z-x| \),
asadar putem presupune fara a restange generalitatea \( x \geq y \geq z \).
Atunci vom avea
\( \frac {1}{3} \) \( \sum_{cyc}{} {x^3} \geq xyz + \frac {3}{4} (\sum_{cyc}{} {x^2y-x^2z}) \Leftrightarrow \)
\( \Leftrightarrow 4 \sum_{cyc}{} {x^3} + 3 \sum_{cyc}{} {x^2z} \geq 12xyz + 3 \sum_{cyc}{} {x^2y} \).

Dar
\( \sum_{cyc}{} {x^3} \geq \sum_{cyc}{} {x^2y} \Rightarrow 4 \sum_{cyc}{} {x^3} + 3 \sum_{cyc}{} {x^2z} \geq 12xyz + 3 \sum_{cyc}{} {x^2y} \Leftrightarrow \)
\( \Leftrightarrow \sum_{cyc}{} {x^3} + 3 \sum_{cyc}{} {x^2z} \geq 12xyz \)
ceea ce rezulta din medii. :wink:
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Inegalitati”