Extindere galoisiana a lui Q

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Extindere galoisiana a lui Q

Post by Cezar Lupu »

Gasiti o extindere galoisiana a corpului numerelor rationale \( \mathbb{Q} \) de grup Galois \( \mathbb{Z}/ 3\mathbb{Z} \).

Admitere SNSB 2002
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 11:24 pm, edited 1 time in total.
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Fie \( \varepsilon \) o radacina primitiva a unitatii de ordin 7.
Atunci \( G=Gal(Q(\varepsilon)/Q) \) este ciclic de ordin 6 (e izomorf cu \( Z_7^* \) ).
Fie H subgrup in G de indice 3 (H este generat de 6 modulo 7). Din teorema fundamentala a teoriei Galois rezulta ca \( K:=Q(\varepsilon)^H \) este Galois peste Q si are gradul =[G:H]=3.

Concret, \( G=\{\phi_i:Q(\varepsilon)\to Q(\varepsilon), \phi_i(\varepsilon)=\varepsilon^i, i=1,2,...,6\} \) si \( H=<\phi_6>=\{\phi_1=Id,\phi_6\} \)

Rezulta ca \( K=Q\left(\varepsilon+\frac1{\varepsilon}\right) \).
Polinomul minimal al lui \( \varepsilon+\frac1\varepsilon=2\cos(2\pi/7) \) este \( X^3+X^2-2X-1 \)
"Greu la deal cu boii mici..."
Post Reply

Return to “Teorie Galois”