JBMO 2007 problema 4
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
JBMO 2007 problema 4
Sa se arate ca daca \( p \) este un numar prim, atunci 7p+3^p-4 nu este patrat perfect.
1) pentru \( p=2 \), avem 19 nu este patrat perfect.
2) \( p=3 \), avem 43 nu este patrat perfect.
3) \( p>3 \). Presupunem ca \( 7p+3^p-4=x^2 \).
Avem \( 3^p\equiv3 \pmod{p} \), deci \( 7p+3^p-4\equiv -1 \pmod{p} \) sau \( x^2\equiv -1 \pmod{p} \).
\( x^{p-1}\equiv 1 \pmod{p} \)
(\( x^2)^{\frac{p-1}{2}}\equiv (-1)^{\frac{p-1}{2}}\equiv 1 \pmod{p} \), deci \( \frac{p-1}{2}=2k \) sau \( p=4k+1 \).
\( 7p\equiv 3 \pmod{4} \)
\( 3^p\equiv 3 \pmod{4} \)
\( -4\equiv 0 \pmod{4} \)
De aici \( x^2\equiv 2 \pmod{4} \), dar \( x^2 \equiv 0,1 \pmod{4} \), contradictie.
2) \( p=3 \), avem 43 nu este patrat perfect.
3) \( p>3 \). Presupunem ca \( 7p+3^p-4=x^2 \).
Avem \( 3^p\equiv3 \pmod{p} \), deci \( 7p+3^p-4\equiv -1 \pmod{p} \) sau \( x^2\equiv -1 \pmod{p} \).
\( x^{p-1}\equiv 1 \pmod{p} \)
(\( x^2)^{\frac{p-1}{2}}\equiv (-1)^{\frac{p-1}{2}}\equiv 1 \pmod{p} \), deci \( \frac{p-1}{2}=2k \) sau \( p=4k+1 \).
\( 7p\equiv 3 \pmod{4} \)
\( 3^p\equiv 3 \pmod{4} \)
\( -4\equiv 0 \pmod{4} \)
De aici \( x^2\equiv 2 \pmod{4} \), dar \( x^2 \equiv 0,1 \pmod{4} \), contradictie.
Last edited by Ahiles on Fri Apr 18, 2008 6:54 pm, edited 3 times in total.