Examen: Teoria masurii
Profesor: Serban Stratila
I. Se presupune cunoscuta masura Lebesgue \( \lambda \) pe \( \mathbb{R} \). Fie \( f:\mathbb{R}\to\mathbb{C} \) o functie.
1) Ce inseamna ca functia \( f \) este \( \lambda \)-integrabila si ce inseamna \( \int_{\mathbb{R}}f d\lambda \)?
De ce are sens aceasta definitie
i) in cazul \( f\geq 0 \);
ii) in cazul general.
2) Daca \( f\in L^{1}(\mathbb{R}, \lambda) \) sa se demonstreze
\( \left | \int_{\mathbb{R}}f d\lambda \right | \leq ||f||_{1} \).
II. Sa se foloseasca teorema lui Fubini si relatia \( \frac{1}{x}=\int_0^{\infty} e^{-xt}dt \) pentru a demonstra
\( \lim_{a\to\infty}\int_0^a\frac{\sin x}{x}dx=\frac{\pi}{2} \).
III. Sa se calculeze
\( \lim_{n\to\infty}\int_0^n \left(1+\frac{x}{n}\right)^{n}e^{-2x}dx \).
Teoria masurii, anul II, sem I, 05 feb 2008
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Teoria masurii, anul II, sem I, 05 feb 2008
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Re: Teoria masurii, anul II, sem I, 05 feb 2008
Solutie.Cezar Lupu wrote:Examen: Teoria masurii
Profesor: Serban Stratila
III.) Sa se calculeze
\( \lim_{n\to\infty}\int_0^n \left(1+\frac{x}{n}\right)^{n}e^{-2x}dx \).
Consideram sirul de functii \( f_{n} : [0,\infty)\to [0,\infty) \) definit prin
\( f_{n}(x)=\left(1+\frac{x}{n}\right)^{n}\cdot e^{-2x}dx\forall n \).
Astfel, avem \( \int_0^n\left(1+\frac{x}{n}\right)^{n}\cdot e^{-2x}dx=\int_0^n f_{n}(x)dx=\int_{[0,n]}f_{n}d\lambda \)
Acum vom considera sirul de functii \( g_{n}=f_{n}\chi_{[0, n]} \) care converge crescator catre \( f \), unde \( f: [0,\infty)\to [0, \infty) \) cu \( f(x)=e^{-x} \).
Prin urmare, \( \lim_{n\to\infty}\int_0^n\left(1+\frac{x}{n}\right)^{n}e^{-2x}dx=\lim_{n\to\infty}\int_{[0,n]}f_{n}d\lambda= \)
\( \lim_{n\to\infty}\int_{[0,\infty)}g_{n}d\lambda=\int_0^{\infty}e^{-x}d\lambda(x)=1. \) \( \qed \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.