Marginire care implica o convergenta

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Marginire care implica o convergenta

Post by Filip Chindea »

Consideram un sir de numere reale \( (a_n)_{n \ge 0} \) si \( q \in (-1, 1) \backslash \{0\} \). Notam \( x_n = \sum_{k=0}^n a_kq^k \), pentru orice \( n \ge 1 \).
a) Demonstrati ca daca \( (a_n)_{n \ge 0} \) este marginit, \( (x_n)_{n \ge 0} \) este convergent.
b) Dati un exemplu de sir nemarginit \( (a_n)_{n \ge 0} \) pentru care \( (x_n)_{n \ge 0} \) converge.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a 11-a”