Fie \( c \) o curba plana regulata, simpla si inchisa avand lungimea \( L \) si fie \( S \) aria domeniului \( D \) marginit de curba \( c \). Atunci este adevarata urmatoarea inegalitate
\( L^{2}\geq 4\pi S \).
P.S. Mentionez ca inegalitatea izoperimetrica are loc si fara conditia ca curba \( c \) sa fie regulata.
inegalitatea izoperimetrica, Blaschke, 1916
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
inegalitatea izoperimetrica, Blaschke, 1916
Last edited by Cezar Lupu on Tue Dec 18, 2007 10:42 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
pohoatza
O demonstratie usor de urmarit si foarte frumoasa pentru cazul poligonului, si anume cand \( L \) este perimetrul unui poligon arbitrar, iar \( S \) aria sa, (desi este cam acelasi lucru privind la limita) poate fi gasita in An Elementary Proof of the Isoperimetric Inequality, Nikolaos Dergiades, Forum Geometricorum, 2002.
Last edited by pohoatza on Mon Oct 01, 2007 10:43 pm, edited 2 times in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Da, Cosmin stiu articolul lui Dergiades. E chiar foarte frumoasa demonstratia lui. Demonstratii pentru aceasta superba inegalitate sunt o groaza. 
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
- Iulian Cimpean
- Euclid
- Posts: 29
- Joined: Fri Nov 09, 2007 7:30 pm
- Location: bucuresti
De asemenea exista si o inegalitate inversa : \( L^{2}\leq4\pi S+ 4\pi B \) ,unde B este aria domeniului marginit de evoluta curbei.
Ca un corolar al celor doua inegalitati, o curba ca in ipoteza e cerc daca si numai daca B e 0.
Ca un corolar al celor doua inegalitati, o curba ca in ipoteza e cerc daca si numai daca B e 0.
Last edited by Iulian Cimpean on Mon Dec 17, 2007 9:07 pm, edited 1 time in total.