Numerele reale \( x, y, z \) distincte doua cate doua, satisfac egalitatile: \( x^3-3x^2=y^3-3y^2=z^3-3z^2 \). Aflati \( x+y+z \).
R. Moldova
IMAC Juniori I 15 mai 2010 Subiectul I
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
IMAC Juniori I 15 mai 2010 Subiectul I
Brojbeanu Andi Gabriel, clasa IX-a
Colegiul National "Constantin Carabella" Targoviste
Colegiul National "Constantin Carabella" Targoviste
Metoda mai simpla :)
\( x^3-3x^2=y^3-3y^2 \)
\( x^3-y^3=3x^2-3y^2 \)
\( (x-y)(x^2+xy+y^2)=3(x+y)(x-y) \)
Cum \( x \neq y \Rightarrow x^2+xy+y^2=3(x+y) \)
Analog \( y^2+zy+z^2=3(z+y) \) si \( z^2+zx+x^2=3(z+x) \)
\( \Rightarrow y^2+zy+z^2-z^2-zx-x^2=3(y-x) \)
\( \Leftrightarrow (y+x)(y-x)+z(y-x)=3(y-x) \)
\( \Leftrightarrow y+x+z=3 \)
\( x^3-y^3=3x^2-3y^2 \)
\( (x-y)(x^2+xy+y^2)=3(x+y)(x-y) \)
Cum \( x \neq y \Rightarrow x^2+xy+y^2=3(x+y) \)
Analog \( y^2+zy+z^2=3(z+y) \) si \( z^2+zx+x^2=3(z+x) \)
\( \Rightarrow y^2+zy+z^2-z^2-zx-x^2=3(y-x) \)
\( \Leftrightarrow (y+x)(y-x)+z(y-x)=3(y-x) \)
\( \Leftrightarrow y+x+z=3 \)
Catană Adrian
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
-
Horia Nicolaescu
- Arhimede
- Posts: 5
- Joined: Wed May 05, 2010 11:59 am
- Location: Bucuresti