IMAC Juniori I 15 mai 2010 Subiectul I

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

IMAC Juniori I 15 mai 2010 Subiectul I

Post by Andi Brojbeanu »

Numerele reale \( x, y, z \) distincte doua cate doua, satisfac egalitatile: \( x^3-3x^2=y^3-3y^2=z^3-3z^2 \). Aflati \( x+y+z \).
R. Moldova
Brojbeanu Andi Gabriel, clasa IX-a
Colegiul National "Constantin Carabella" Targoviste
User avatar
Mr. Ady
Euclid
Posts: 22
Joined: Fri Jun 04, 2010 9:33 pm
Contact:

Metoda mai simpla :)

Post by Mr. Ady »

\( x^3-3x^2=y^3-3y^2 \)
\( x^3-y^3=3x^2-3y^2 \)
\( (x-y)(x^2+xy+y^2)=3(x+y)(x-y) \)
Cum \( x \neq y \Rightarrow x^2+xy+y^2=3(x+y) \)
Analog \( y^2+zy+z^2=3(z+y) \) si \( z^2+zx+x^2=3(z+x) \)
\( \Rightarrow y^2+zy+z^2-z^2-zx-x^2=3(y-x) \)
\( \Leftrightarrow (y+x)(y-x)+z(y-x)=3(y-x) \)
\( \Leftrightarrow y+x+z=3 \)
Catană Adrian
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
Horia Nicolaescu
Arhimede
Posts: 5
Joined: Wed May 05, 2010 11:59 am
Location: Bucuresti

Post by Horia Nicolaescu »

O alta solutie ar fi urmatoarea.
Notam t=x^3-3x^2
Deci x,y,z sunt radacinile polinomului de grad 3:
P(a)=a^3-3a^2-t si aplicand relatiile lui viete obtinem x+y+z=3
Post Reply

Return to “Algebra”