T2selectie - JBOM 2005

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
andreiilie
Euclid
Posts: 38
Joined: Mon May 24, 2010 4:45 pm

T2selectie - JBOM 2005

Post by andreiilie »

Fie \( a,b,c \in \mathfrak{R} ^+ \) astfel incat
\( a+b+c \geq \frac{1}{a}+ \frac{1}{b} + \frac{1}{c} \)
Aratati ca
\( a+b+c \geq \frac{3}{abc} \)

Off topic: Incepe sa imi placa LaTeX-ul :D
"Orice gandire corecta e matematica"
ONM Slatina -cls a VI-a -2009
ONF Constanta - cls a VII-a -2010
ONM Iasi - cls a VII-a -2010
La inceput de cariera:).
Clasa a 8-a M, Colegiul National Mihai Viteazul Ploiesti
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Din \( a+b+c\ \ge\ \frac 1a+\frac 1b+\frac 1c\ \Longrightarrow\ (a+b+c)^2\ \ge\ \left(\frac 1a+\frac 1b+\frac 1c\right)^2\ \stackrel{(\ast)}{\ge}\ 3\left(\frac 1{ab}+\frac 1{bc}+\frac 1{ca}\right)=\frac{3(a+b+c)}{abc} \)

Asadar, \( a+b+c\ \ge\ \frac 3{abc} \) . Am folosit inegalitatea cunoscuta : \( (x+y+z)^2\ \ge 3(xy+yz+zx)\ (\ast) \) .
User avatar
andreiilie
Euclid
Posts: 38
Joined: Mon May 24, 2010 4:45 pm

Post by andreiilie »

bv, frumoasa solutia:)
"Orice gandire corecta e matematica"
ONM Slatina -cls a VI-a -2009
ONF Constanta - cls a VII-a -2010
ONM Iasi - cls a VII-a -2010
La inceput de cariera:).
Clasa a 8-a M, Colegiul National Mihai Viteazul Ploiesti
Post Reply

Return to “Inegalitati”