Daca avem un operator marginit si injectiv \( T:X \to X \) astfel incat \( T y_n \to 0 \) atunci ce putem spune despre sirul \( y_n \)? Tinde la 0, are un subsir care tinde la 0?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Considera un spatiu Hilbert cu o baza ortonormata \( e_i, i\in\mathbb{N} \) si operatorul T definit prin \( T(e_n) = \frac{e_n}n \).
E clar ca e marginit, injectiv si \( T(e_n)\to 0 \) dar sirul \( \{e_n\}_n \) n-are pe 0 ca punct de acumulare.