Intrebare

Moderator: Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Intrebare

Post by Beniamin Bogosel »

Daca avem un operator marginit si injectiv \( T:X \to X \) astfel incat \( T y_n \to 0 \) atunci ce putem spune despre sirul \( y_n \)? Tinde la 0, are un subsir care tinde la 0?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

Post by Dragos Fratila »

Considera un spatiu Hilbert cu o baza ortonormata \( e_i, i\in\mathbb{N} \) si operatorul T definit prin \( T(e_n) = \frac{e_n}n \).
E clar ca e marginit, injectiv si \( T(e_n)\to 0 \) dar sirul \( \{e_n\}_n \) n-are pe 0 ca punct de acumulare.
"Greu la deal cu boii mici..."
Post Reply

Return to “Analiza functionala si teorie spectrala”