Limita unui sir integral 4

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Limita unui sir integral 4

Post by Marius Mainea »

Fie functia continua si impara \( f:[-2,2]\to\mathbb{R} \), astfel incat pentru orice \( x\in[0,1] \) avem \( f(x)\ge 0 \) si \( f(1-x)=f(x) \).
Aratati ca

\( \lim_{n\to\infty}\int_0^2\frac{f(x)}{x+n}dx=2\int_0^1xf(x)dx \).

Virgil Nicula SHL-2005
User avatar
Sabin Salajan
Euclid
Posts: 29
Joined: Tue Apr 22, 2008 11:12 am
Location: Satu Mare

Post by Sabin Salajan »

Unde e greseala in urmatoarea demonstratie :

Din Teorema de Medie \( \int_0^2\frac{f(x)}{x+n}=\frac{1}{c+n}\int_0^2f(x)=\frac{1}{c+n}2f(w) \) care tinde spre 0 cand \( n -> \infty \)

Deci ramane sa aratam ca \( \int_0^1xf(x)=0 \) dar asta e fals ...

Evident am gresit eu undeva sau nu e bine scris enuntul,va rog corectati-ma :)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Sabin Salajan wrote:Unde e greseala in urmatoarea demonstratie :

Din Teorema de Medie \( \int_0^2\frac{f(x)}{x+n}=\frac{1}{c+n}\int_0^2f(x)=\frac{1}{c+n}2f(w) \) care tinde spre 0 cand \( n -> \infty \)
Nu se poate aplica teorema de medie pentru ca f nu este pozitiva :!:
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Eu unul cred ca problema este gresita ,sau cel putin enuntul ,pt ca f fiind continua isi atinge minimmul deci \( \int_0^2 \frac{f(x)}{x+n}dx\ge\int_0^2 \frac{m}{x+n}dx=m(ln(2+n)-ln(n))\rightarrow 0 \) iar \( \int_0^2 \frac{f(x)}{x+n}dx\le\int_0^2 \frac{M}{x+n}dx=M(ln(2+n)-ln(n))\rightarrow 0 \)
Post Reply

Return to “Analiza matematica”