Fie functia continua si impara \( f:[-2,2]\to\mathbb{R} \), astfel incat pentru orice \( x\in[0,1] \) avem \( f(x)\ge 0 \) si \( f(1-x)=f(x) \).
Aratati ca
\( \lim_{n\to\infty}\int_0^2\frac{f(x)}{x+n}dx=2\int_0^1xf(x)dx \).
Virgil Nicula SHL-2005
Limita unui sir integral 4
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Sabin Salajan
- Euclid
- Posts: 29
- Joined: Tue Apr 22, 2008 11:12 am
- Location: Satu Mare
Unde e greseala in urmatoarea demonstratie :
Din Teorema de Medie \( \int_0^2\frac{f(x)}{x+n}=\frac{1}{c+n}\int_0^2f(x)=\frac{1}{c+n}2f(w) \) care tinde spre 0 cand \( n -> \infty \)
Deci ramane sa aratam ca \( \int_0^1xf(x)=0 \) dar asta e fals ...
Evident am gresit eu undeva sau nu e bine scris enuntul,va rog corectati-ma
Din Teorema de Medie \( \int_0^2\frac{f(x)}{x+n}=\frac{1}{c+n}\int_0^2f(x)=\frac{1}{c+n}2f(w) \) care tinde spre 0 cand \( n -> \infty \)
Deci ramane sa aratam ca \( \int_0^1xf(x)=0 \) dar asta e fals ...
Evident am gresit eu undeva sau nu e bine scris enuntul,va rog corectati-ma
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti