Fie \( f:\mathbb{R}\to\mathbb{R} \) o functie continua astfel incat pentru orice \( a\neq b \) avem
\( \displaystyle\frac{\int_a^b f(x)dx}{b-a}\geq f(a) \).
Sa se arate ca \( f \) este constanta.
Inegalitate integrala implica functie constanta
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitate integrala implica functie constanta
Last edited by Cezar Lupu on Wed Nov 14, 2007 10:44 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Tudor Micu
- Pitagora
- Posts: 51
- Joined: Thu Mar 06, 2008 9:39 pm
- Location: Cluj-Napoca, Romania
Fixam pe b. Luam pe a ca variabila, fie a=t.
Pentru t>b avem \( \frac{\int_b^t f(x)dx}{t-b}\geq f(t) \), deci \( \int_b^t f(x)dx\geq (t-b)f(t) \)
Fie \( F(t)=\int_b^t f(x)dx \), deci \( F(b)=0 \). Avem atunci \( F(t)\geq(t-b)f(t) \)
\( (\frac{F(t)}{t-b})^{/}=\frac{f(t)(t-b)-F(t)}{(t-b)^2}\leq 0 \), deci \( \frac{F(t)}{t-b} \) descrescatoare
Atunci, cum \( t>b \) avem \( \frac{F(t)}{t-b}\leq\lim_{t\rightarrow b}\frac{F(t)}{t-b}=f(b) \), din L'Hospital
Rezulta \( F(t)\leq (t-b)f(b) \), dar \( F(t)\geq (t-b)f(t) \), de unde \( f(b)\geq f(t) \), oricare ar fi \( t>b \)
Luam acum t<b. Avem \( \frac{\int_t^b f(x)dx}{b-t}\geq f(t) \), deci \( \int_t^b f(x)dx\geq (b-t)f(t) \)
Fie \( F(t)=\int_b^t f(x)dx \) deci F(b)=0. Avem atunci \( -F(t)\geq(b-t)f(t) \), deci \( F(t)-(t-b)f(t)\leq 0 \)
\( (\frac{F(t)}{t-b})^{/}=\frac{f(t)(t-b)-F(t)}{(t-b)^2}\geq 0 \), deci \( \frac{F(t)}{t-b} \) crescatoare, de unde \( \frac{F(t)}{t-b}\leq\lim_{t\rightarrow b}\frac{F(t)}{t-b}=f(b) \), din L'Hospital, deci \( -\frac{F(t)}{b-t}\leq f(b) \)
Rezulta \( -F(t)\leq (b-t)f(b) \), dar \( -F(t)\geq (b-t)f(t) \), de unde \( f(b)\geq f(t) \), oricare ar fi \( t<b \)
Avem deci ca \( f(t)\leq f(b) \) oricare ar fi t, deci b ar fi un punct de maxim global. Dar b a fost ales arbitrar, deci functia este constanta.
Pentru t>b avem \( \frac{\int_b^t f(x)dx}{t-b}\geq f(t) \), deci \( \int_b^t f(x)dx\geq (t-b)f(t) \)
Fie \( F(t)=\int_b^t f(x)dx \), deci \( F(b)=0 \). Avem atunci \( F(t)\geq(t-b)f(t) \)
\( (\frac{F(t)}{t-b})^{/}=\frac{f(t)(t-b)-F(t)}{(t-b)^2}\leq 0 \), deci \( \frac{F(t)}{t-b} \) descrescatoare
Atunci, cum \( t>b \) avem \( \frac{F(t)}{t-b}\leq\lim_{t\rightarrow b}\frac{F(t)}{t-b}=f(b) \), din L'Hospital
Rezulta \( F(t)\leq (t-b)f(b) \), dar \( F(t)\geq (t-b)f(t) \), de unde \( f(b)\geq f(t) \), oricare ar fi \( t>b \)
Luam acum t<b. Avem \( \frac{\int_t^b f(x)dx}{b-t}\geq f(t) \), deci \( \int_t^b f(x)dx\geq (b-t)f(t) \)
Fie \( F(t)=\int_b^t f(x)dx \) deci F(b)=0. Avem atunci \( -F(t)\geq(b-t)f(t) \), deci \( F(t)-(t-b)f(t)\leq 0 \)
\( (\frac{F(t)}{t-b})^{/}=\frac{f(t)(t-b)-F(t)}{(t-b)^2}\geq 0 \), deci \( \frac{F(t)}{t-b} \) crescatoare, de unde \( \frac{F(t)}{t-b}\leq\lim_{t\rightarrow b}\frac{F(t)}{t-b}=f(b) \), din L'Hospital, deci \( -\frac{F(t)}{b-t}\leq f(b) \)
Rezulta \( -F(t)\leq (b-t)f(b) \), dar \( -F(t)\geq (b-t)f(t) \), de unde \( f(b)\geq f(t) \), oricare ar fi \( t<b \)
Avem deci ca \( f(t)\leq f(b) \) oricare ar fi t, deci b ar fi un punct de maxim global. Dar b a fost ales arbitrar, deci functia este constanta.
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Exista o solutie mult mai rapida .Fie a<b arbitrare .Presupun f neconstanta pe [a,b].Cum f este continua ea isi atinge minimul si maximul deci fie \( m,M a.i. m\le f(x)\le M,\forall x\in[a,b] \).Mai mult din ipoteza deducem ca \( F(b)-F(a)\ge f(b) \) si \( f(b)(b-a)\le F(b)-F(a)<M(b-a)=>f(a),f(b)<M \).Fie \( c\in(a,b) a.i. f(c)=M \).Din ipoteza deducem ca \( f(c)(c-a)\le F(c)-F(a)<M(c-a) \),unde inegalitatea din dreapta vine din faptul ca f(a)<f(c) si c e punctul de maxim al lui f cum l-am definit mai inainte .Evident de aici rezulta \( M<M \),contradictie .Deci f e constanta pe \( [a,b] \).Cum a si b au fost alese arbitrar rezulta ca f este constanta.