SEEMOUS 2010- problema 3

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

SEEMOUS 2010- problema 3

Post by Radu Titiu »

a)Aratati ca pentru orice matrice \( A \in \mathcal{M}_2(\mathbb{R}) \) exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( A=B^2+C^2 \).

b) nu exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( BC=CB \) si \( \begin{pmatrix} 0 & 1 \\ 1 & 0\end{pmatrix}=B^2+C^2 \).
A mathematician is a machine for turning coffee into theorems.
Cosmin Pohoata
Euclid
Posts: 20
Joined: Fri Feb 01, 2008 12:13 am
Location: Princeton, NJ
Contact:

Post by Cosmin Pohoata »

Problema asta nu s-a mai dat tot pe la Seemous/IMC anii trecuti?
Lema 1. Fiecare om are dreptul la un paharel.
Lema 2. Dupa un paharel esti un alt om.
Post Reply

Return to “Algebra”