a)Aratati ca pentru orice matrice \( A \in \mathcal{M}_2(\mathbb{R}) \) exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( A=B^2+C^2 \).
b) nu exista \( B,C \in \mathcal{M}_2(\mathbb{R}) \) a.i. \( BC=CB \) si \( \begin{pmatrix} 0 & 1 \\ 1 & 0\end{pmatrix}=B^2+C^2 \).
SEEMOUS 2010- problema 3
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
SEEMOUS 2010- problema 3
A mathematician is a machine for turning coffee into theorems.
-
Cosmin Pohoata
- Euclid
- Posts: 20
- Joined: Fri Feb 01, 2008 12:13 am
- Location: Princeton, NJ
- Contact: