SEEMOUS 2010- problema 1

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

SEEMOUS 2010- problema 1

Post by Radu Titiu »

Fie \( f_0 :[0,1] \to \mathbb{R} \) o functie continua.Definim sirul de functii \( f_n :[0,1] \to \mathbb{R} \) astfel :

\( f_n(x)=\int_{0}^x f_{n-1}(t)dt \) pentru orice \( n \geq 1 \).

a)Aratati ca seria \( \sum_{n \geq 1} f_n(x) \) e convergenta pentru orice \( x \in [0,1] \).
b)Gasiti o formula explicita pentru \( \sum_{n \geq 1}^{\infty} f_n(x) \) , \( x \in [0,1] \).
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza reala”