patrulater convex => paralelogram

Post Reply
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

patrulater convex => paralelogram

Post by Al3xx »

Fie \( ABCD \) un patrulater convex , iar \( M \),\( N \),\( P \),\( Q \) mijloacele laturilor.Sa se arate ca \( MNPQ \) este paralelogram.


Caut o rezolvare cu numere complexe (Aplicarea Nr. Complexe in trigonometrie) dar inca nu am reusit..
User avatar
Al3xx
Euclid
Posts: 35
Joined: Fri Nov 07, 2008 10:39 pm
Location: Slatina

Post by Al3xx »

Am gasit :D Se arata pe rand ca \( MN || AC \) , \( QP || AC \) respectiv \( NP || BD \) si \( QM || BD \)

\( Z_{M}=\frac{Z_{A}+Z_{B}}{2} \)
\( Z_{N}=\frac{Z_{B}+Z_{C}}{2} \)

Arat ca \( MN||AC \) \( \Longleftrightarrow \) \( \frac{Z_{C}-Z_{A}}{\frac{Z_{B}+Z_{C}}{2}-\frac{Z_{A}+Z_{B}}{2}} = 2 \in R \) . Analog celelalte
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Sau pur si simplu zici ca \( z_M+z_P=z_N+z_Q \)
n-ar fi rau sa fie bine :)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Notam \( X(x) \) - punctul \( X \) de afix \( x\in\mathbb C \) si mijloacele \( M\ ,\ N\ ,\ P\ ,\ Q \)

ale laturilor \( AB\ ,\ BC\ ,\ CD\ ,\ DA \) . Prin urmare

\( A(a)\ ,\ B(b)\ ,\ C(c)\ ,\ D(d)\ ,\ M(m)\ ,\ N(n)\ ,\ P(p)\ ,\ Q(q)\ \Longrightarrow \)

\( 2m=a+b\ ,\ 2n=b+c\ ,\ 2p=c+d\ ,\ 2q=d+a\ \Longrightarrow \)

\( m+p=n+q=\frac 12\cdot (a+b+c+d)\ \Longrightarrow\ MNPQ \) - paralelogram.

Aceste randuri nu le interpretati ca o solutie, desi este si o solutie.
Am postat pentru a da o mostra cum trebuie facuta o redactare.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Virgil Nicula wrote:Notam \( X(x) \) - punctul \( X \) de afix \( x\in\mathbb C \) si mijloacele \( M\ ,\ N\ ,\ P\ ,\ Q \)

ale laturilor \( AB\ ,\ BC\ ,\ CD\ ,\ DA \) . Prin urmare :

\( A(a)\ ,\ B(b)\ ,\ C(c)\ ,\ D(d)\ ,\ M(m)\ ,\ N(n)\ ,\ P(p)\ ,\ Q(q)\ \Longrightarrow \)

\( 2m=a+b\ ,\ 2n=b+c\ ,\ 2p=c+d\ ,\ 2q=d+a\ \Longrightarrow \)

\( m+p=n+q=\frac 12\cdot (a+b+c+d)\ \Longrightarrow\ MNPQ \) - paralelogram.

Aceste randuri nu le interpretati ca o solutie, desi este si o solutie.
Am postat pentru a da o mostra cum trebuie facuta o redactare.
Post Reply

Return to “Clasa a 10-a”