Fie numerele reale strict pozitive \( a,\ b,\ c \) astfel incat \( a^{2}+b^{2}+c^{2}=3 \). Sa se arate ca \( \displaystyle \frac{a^{3}}{c^{2}+ab}+\frac{b^{3}}{a^{2}+bc}+\frac{c^{3}}{b^{2}+ca}\ge\frac{3}{2} \).
Cezar Lupu
O inegalitate interesanta
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
O inegalitate interesanta
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
\( \sum_{cyc}\frac{a^3}{c^2+ab}=\sum_{cyc}\frac{a^4}{ac^2+a^2b}\ge\frac{(a^2+b^2+c^2)^2}{\sum_{sym}a^2b}=\frac{9}{\sum_{sym}a^2b} \)
Deci ramane de demonstrat \( \sum_{sym}a^2b\le 6=2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(b^2+c^2)\le 2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(3-a^2)\le 2(a^2+b^2+c^2)\Longrightarrow a(a-1)(a+3)+b(b-1)(b+3)+c(c-1)(c+3)\ge 0 \)
Functia \( f(x)=x(x-1)(x+3) \) este convexa pe \( \(0,+\infty\) \)
Aplicand inegalitatea lui Jensen \( f(a)+f(b)+f(c)\ge 3f(\frac{a+b+c}{3})=(a+b+c)(a+b+c-1)(a+b+c+3)\ge 0; \) deoarece cel putin unul din numerele \( a,b,c\ge 1 \) si problema este rezolvata.
Deci ramane de demonstrat \( \sum_{sym}a^2b\le 6=2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(b^2+c^2)\le 2(a^2+b^2+c^2)\Longleftrightarrow \sum_{cyc}a(3-a^2)\le 2(a^2+b^2+c^2)\Longrightarrow a(a-1)(a+3)+b(b-1)(b+3)+c(c-1)(c+3)\ge 0 \)
Functia \( f(x)=x(x-1)(x+3) \) este convexa pe \( \(0,+\infty\) \)
Aplicand inegalitatea lui Jensen \( f(a)+f(b)+f(c)\ge 3f(\frac{a+b+c}{3})=(a+b+c)(a+b+c-1)(a+b+c+3)\ge 0; \) deoarece cel putin unul din numerele \( a,b,c\ge 1 \) si problema este rezolvata.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Da acum am vazut.
Revenind acolo
\( LHS\ge\frac{9}{2(a^2b+b^2c+c^2a)} \)
Ramane de demonstrat \( a^2b+b^2c+c^2a\le 3 \)
Dar \( a^2b+b^2c+c^2a\le\sqrt{(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)}=\sqrt{3(a^2b^2+b^2c^2+c^2a^2)} (1) \)
\( a^2b^2+b^2c^2+c^2a^2\le\frac{(a^2+b^2+c^2)^2}{3}=3 \)
Acum revenind in \( (1) \) s-a terminat.
Sper ca de data asta sa nu mai fi gresit
Revenind acolo
\( LHS\ge\frac{9}{2(a^2b+b^2c+c^2a)} \)
Ramane de demonstrat \( a^2b+b^2c+c^2a\le 3 \)
Dar \( a^2b+b^2c+c^2a\le\sqrt{(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)}=\sqrt{3(a^2b^2+b^2c^2+c^2a^2)} (1) \)
\( a^2b^2+b^2c^2+c^2a^2\le\frac{(a^2+b^2+c^2)^2}{3}=3 \)
Acum revenind in \( (1) \) s-a terminat.
Sper ca de data asta sa nu mai fi gresit