\( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)Etapa locala, ARGES 2010
\( \fbox{\ 1.\ } \) Sa se determine numerele reale \( x \) si \( y \) cu proprietatea ca : \( 16^x+16^y+2^{\frac 1x}+2^{\frac 1y}=8 \) .
\( \fbox{\ 2.\ } \) a) Daca \( x_k\in (1,2]\ ,\ k=\overline{1,n} \) atunci : \( \sum_{k=1}^n \log_{x_k} (3x_{k+1}-2)\ \ge\ 2n \) , unde \( x_{n+1}=x_1 \) .
\( \ \ \ \ \ \ \ \ \ \ \)b) Sa se rezolve ecuatia : \( x^{\log_5 4}-7\log_5 x=2-x \) .
\( \fbox{\ 3.\ } \) Fie \( a \) , \( b \) , \( c\ \in\ \mathbb{R}^{\ast} _+ -\{1\} \) astfel incat \( b^2+c^2=a^2 \) . Sa se rezolve ecuatia : \( b^{\log_a x}+c^{\log_a x}=x \) .
\( \fbox{\ 4.\ } \) Fie numerele complexe \( a \) , \( b \) , \( c \) ,\( \varepsilon \) cu \( a\ \ne\ 0 \) , \( \varepsilon\ \ne\ 1 \) , \( \varepsilon^3=1 \) si \( |a+b\varepsilon+c\varepsilon^2|\ \le\ |a| \) .
\( \ \ \ \ \ \ \ \ \ \ \)Sa se arate ca ecuatia \( az^2+bz+c=0 \) are cel putin o solutie cu modulul mai mic sau egal decat \( 2 \) .
Etapa locala, Arges 2010
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Etapa locala, Arges 2010
Last edited by Mateescu Constantin on Sat Sep 04, 2010 12:21 am, edited 1 time in total.
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
SUBIECTUL I
\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Vezi ca nu ai aplicat bine AM-GM ...Adriana Nistor wrote:SUBIECTUL I
\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Adriana Nistor
- Pitagora
- Posts: 82
- Joined: Thu Aug 07, 2008 10:07 pm
- Location: Drobeta Turnu Severin, Mehedinti
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Consideram functia
\( f:\mathbb{R}^*\rightarrow\mathbb{R}_+ \) \( f(t)=16^t+2^{\frac{1}{t}} \)
Pe \( (0,+\infty) f(t)\ge 8 \)
Pe \( (-\infty,0) f(t)\le 2 \)
Ecuatia data este echivalenta cu \( f(x)+f(y)=8 \)
Daca \( x>0 \) atunci \( f(x)\ge 8 \), dar \( f(y)>0 \) deci nu avem solutii.
Singurul caz ramas neanalizat este acela cu ambele numere negative pentru care
\( f(x)+f(y)<4<8 \)
In concluzie ecuatia nu are nicio solutie pe multimea numerelor reale.
\( f:\mathbb{R}^*\rightarrow\mathbb{R}_+ \) \( f(t)=16^t+2^{\frac{1}{t}} \)
Pe \( (0,+\infty) f(t)\ge 8 \)
Pe \( (-\infty,0) f(t)\le 2 \)
Ecuatia data este echivalenta cu \( f(x)+f(y)=8 \)
Daca \( x>0 \) atunci \( f(x)\ge 8 \), dar \( f(y)>0 \) deci nu avem solutii.
Singurul caz ramas neanalizat este acela cu ambele numere negative pentru care
\( f(x)+f(y)<4<8 \)
In concluzie ecuatia nu are nicio solutie pe multimea numerelor reale.