Fie \( a,b\in \mathbb{R} \) si \( (a_n)_{n\ge 1},(b_n)_{n\ge 1} \) siruri de numere reale convergente la \( a \), respectiv \( b \).
Fie \( \sigma \) o permutare a numerelor naturale {\( 1,2,...,n \)}. Sa se arate ca \( \lim_{n\to\infty}\frac{\sum_{k=1}^n a_k b_{\sigma(k)}}{n}=ab \).
OLM Dolj Subiectul 1
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)