Limita unei integrale

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Limita unei integrale

Post by Bogdan Cebere »

Fie \( f:R \to (0,\infty) \) o functie integrabila a.i. \( \lim_{x \to \infty} {\int^x_0 f(t) dt}= \infty \). Sa se arate ca \( \lim_{x \to \infty} {\frac{1}{x} \int^x_0{(x-t)f(t)dt}}=\infty \).

Gabriel Dospinescu
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Aplicand l'Hospital rezulta ca \( \lim_{x\to\infty} \frac{\int_0^x (x-t)f(t)dt}{x}=\lim_{x\to\infty} xf(x)+F(x)-xf(x)=\lim_{x\to\infty} F(x)=\infty \),unde \( F(x)=\int_0^x f(t)dt \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Atentie,f este doar integrabila!
Post Reply

Return to “Analiza matematica”