Fie \( a,b,c,d>0 \), cu proprietatea ca: \( a^2+b^2+c^2+d^2=1. \) Demonstrati inegalitatea:
\( (1-a)(1-b)(1-c)(1-d)\geq abcd \)
Inegalitate in 4 variabile!
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Inegalitate in 4 variabile!
Feuerbach
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( cd\le\frac{c^2+d^2}{2}=\frac{1-a^2-b^2}{2}\le(1-a)(1-b) \) \( \Longleftrightarrow (1-a-b)^2\ge 0 \)
Analog \( ab\le (1-c)(1-d) \) si prin inmultire obtinem concluzia.
Analog \( ab\le (1-c)(1-d) \) si prin inmultire obtinem concluzia.
Last edited by Marius Mainea on Thu Jan 01, 2009 10:44 pm, edited 1 time in total.
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutia mea!
Solutie. Presupunem ca: \( \frac{(1-a)(1-b)(1-c)(1-d)}{abcd}=p^4, p<1. \) Facem substitutia: \( x=\frac{1-a}{pa};y=\frac{1-b}{pb};z=\frac{1-c}{pc};t=\frac{1-d}{pd}. \)
\( x=\frac{1-a}{pa}\Rightarrow px=\frac{1-a}{a}\Rightarrow 1+px=\frac{1}{a}\Rightarrow \frac{1}{(1+px)^2}=a^2. \) Analog: \( \frac{1}{(1+py)^2}=b^2;\frac{1}{(1+pz)^2}=c^2;\frac{1}{(1+pt)^2}=d^2. \)
Conditia din enunt este echivalenta cu: \( \sum_{cyc}\frac{1}{(1+px)^2}=1 \), unde \( xyzt=1 \). Cum \( p<1 \):
\( \Rightarrow1=\sum_{cyc}\frac{1}{(1+px)^2}>\sum_{cyc}\frac{1}{(1+x)^2}. \)
Problema se reduce la a demonstra ca:
\( \frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}+\frac{1}{(1+z)^2}+\frac{1}{(1+t)^2}\geq 1. \) (inegalitate data la China Team Selection Test 2005).
Se foloseste cunoscuta lema: Fie \( x,y\in\mathbb{R_{+}} \). Atunci are loc urmatoarea inegalitate:
\( \frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}\geq \frac{1}{1+xy}. \)
Dupa evectuarea calculelor inegalitatea e echivalenta cu: \( xy(x-y)^2+(1-xy)^2\geq 0 \) care este evidenta. Mai exista o demonstratie a acestei leme utilizand inegalitatea Cauchy-Buniakowski-Schwarz apartinand lui Darij Grinberg. (vezi aici.)
Aplicand lema avem: \( (\frac{1}{(1+x)^2}+\frac{1}{(1+y)^2})+(\frac{1}{(1+z)^2}+\frac{1}{(1+t)^2})\geq \frac{1}{1+xy}+\frac{1}{1+zt}=\frac{1+xy+zt+xyzt}{(1+xy)(1+zt)}=1. \)
Deci presupunerea facuta este falsa si concluzia este evidenta!
\( x=\frac{1-a}{pa}\Rightarrow px=\frac{1-a}{a}\Rightarrow 1+px=\frac{1}{a}\Rightarrow \frac{1}{(1+px)^2}=a^2. \) Analog: \( \frac{1}{(1+py)^2}=b^2;\frac{1}{(1+pz)^2}=c^2;\frac{1}{(1+pt)^2}=d^2. \)
Conditia din enunt este echivalenta cu: \( \sum_{cyc}\frac{1}{(1+px)^2}=1 \), unde \( xyzt=1 \). Cum \( p<1 \):
\( \Rightarrow1=\sum_{cyc}\frac{1}{(1+px)^2}>\sum_{cyc}\frac{1}{(1+x)^2}. \)
Problema se reduce la a demonstra ca:
\( \frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}+\frac{1}{(1+z)^2}+\frac{1}{(1+t)^2}\geq 1. \) (inegalitate data la China Team Selection Test 2005).
Se foloseste cunoscuta lema: Fie \( x,y\in\mathbb{R_{+}} \). Atunci are loc urmatoarea inegalitate:
\( \frac{1}{(1+x)^2}+\frac{1}{(1+y)^2}\geq \frac{1}{1+xy}. \)
Dupa evectuarea calculelor inegalitatea e echivalenta cu: \( xy(x-y)^2+(1-xy)^2\geq 0 \) care este evidenta. Mai exista o demonstratie a acestei leme utilizand inegalitatea Cauchy-Buniakowski-Schwarz apartinand lui Darij Grinberg. (vezi aici.)
Aplicand lema avem: \( (\frac{1}{(1+x)^2}+\frac{1}{(1+y)^2})+(\frac{1}{(1+z)^2}+\frac{1}{(1+t)^2})\geq \frac{1}{1+xy}+\frac{1}{1+zt}=\frac{1+xy+zt+xyzt}{(1+xy)(1+zt)}=1. \)
Deci presupunerea facuta este falsa si concluzia este evidenta!
Feuerbach
O solutie asemanatoare cu cea a domnului Mainea :
Demonstram ca : \( (1-a)(1-b)(a^2+b^2)\ge ab(c^2+d^2) \)
si \( (1-c)(1-d)(c^2+d^2)\ge cd(a^2+b^2) \)
\( 2(1-a)(1-b)(a^2+b^2)\ge 2ab(c^2+d^2)\Leftrightarrow ((a+b-1)^2+c^2+d^2)(a^2+b^2)-2ab(c^2+d^2)\ge 0\Leftrightarrow (a+b-1)^2(a^2+b^2)+(a-b)^2(c^2+d^2)\ge 0 \) , unde am folosit identitatea \( 2(1-a)(1-b)=(a+b-1)^2+c^2+d^2 . \)
Prin inmultire rezulta concluzia .
Demonstram ca : \( (1-a)(1-b)(a^2+b^2)\ge ab(c^2+d^2) \)
si \( (1-c)(1-d)(c^2+d^2)\ge cd(a^2+b^2) \)
\( 2(1-a)(1-b)(a^2+b^2)\ge 2ab(c^2+d^2)\Leftrightarrow ((a+b-1)^2+c^2+d^2)(a^2+b^2)-2ab(c^2+d^2)\ge 0\Leftrightarrow (a+b-1)^2(a^2+b^2)+(a-b)^2(c^2+d^2)\ge 0 \) , unde am folosit identitatea \( 2(1-a)(1-b)=(a+b-1)^2+c^2+d^2 . \)
Prin inmultire rezulta concluzia .
. A snake that slithers on the ground can only dream of flying through the air.