Concursul GM "Nicolae Teodorescu" 2009, problema 4

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Concursul GM "Nicolae Teodorescu" 2009, problema 4

Post by Laurentiu Tucaa »

Fie \( n \ge 2 \) natural. Sa se arate ca polinomul \( f=X^{n-1}+X^{n-2}+...+X+1 \) este ireductibil in \( \mathbb{Z}[X] \) daca si numai daca n este prim.

Marcel Tena
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

1) Daca n e prim se aplica Criteriul lui Eisenstein (exemplu cunoscut). (f e polinomul ciclotomic de ordin n prim.)

2) Daca \( n=n_1\cdot n_2 \) atunci

\( f=\frac{X^{n_1n_2}-1}{X-1}=\frac{(X^{n_1}-1)g}{X-1}=(X^{n_1-1}+...+X+1)g \).
Post Reply

Return to “Algebra”