Fie un patrulater convex ABCD . Notam cu M mijlocul laturii [BC] si cu N mijlocul laturii [CD]. Dreptele AM si BN se intersecteaza in P. Daca \( \frac{PM}{AM}=\frac{1}{5} \) si \( \frac{PB}{BN}=\frac{2}{3} \) , sa se precizeze natura patrulaterului ABCD.
L.Panaitopol, OJM,1975
Conditii suficiente
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Notam \( \vec{AB}=\vec{u},\ \vec{BC}=\vec{v},\ \vec{CD}=a\vec{u}+b\vec{v},\ a,b\in\mathbb{R} \)
\( \Longrightarrow \vec{AD}=(a+1)\vec{u}+(b+1)\vec{v} \)
Avem \( \vec{AN}=\frac{a+2}{2}\ \vec{u}+\frac{b+2}{2}\ \vec{v} \)
\( \vec{AP}=\frac{3\vec{AB}+2\vec{AN}}{5} \)
\( \Longrightarrow \overline{\underline{\left\|{\vec{AP}=\frac{a+5}{5}\ \vec{u}+\frac{b+2}{5}\ \vec{v}\right\| \)
\( \overline{\underline{\left\|{\vec{AM}=\vec{u}+\frac{1}{2}\ \vec{v}\right\| \)
Cum \( \vec{AP} \) si \( \vec{AM} \) sunt coliniari obtinem \( a-2b+1=0\ (1) \)
Analog se exprima vectorii \( \vec{BP} \) si \( \vec{BN} \) de unde obtinem \( 2a+b+2=0\ (2) \)
Din \( (1) \) si \( (2) \) rezulta \( a=-1 \) si \( b=0 \), adica \( \vec{CD}=-\vec{AB}=\vec{BA} \), deci \( ABCD \) este paralelogram.
\( \Longrightarrow \vec{AD}=(a+1)\vec{u}+(b+1)\vec{v} \)
Avem \( \vec{AN}=\frac{a+2}{2}\ \vec{u}+\frac{b+2}{2}\ \vec{v} \)
\( \vec{AP}=\frac{3\vec{AB}+2\vec{AN}}{5} \)
\( \Longrightarrow \overline{\underline{\left\|{\vec{AP}=\frac{a+5}{5}\ \vec{u}+\frac{b+2}{5}\ \vec{v}\right\| \)
\( \overline{\underline{\left\|{\vec{AM}=\vec{u}+\frac{1}{2}\ \vec{v}\right\| \)
Cum \( \vec{AP} \) si \( \vec{AM} \) sunt coliniari obtinem \( a-2b+1=0\ (1) \)
Analog se exprima vectorii \( \vec{BP} \) si \( \vec{BN} \) de unde obtinem \( 2a+b+2=0\ (2) \)
Din \( (1) \) si \( (2) \) rezulta \( a=-1 \) si \( b=0 \), adica \( \vec{CD}=-\vec{AB}=\vec{BA} \), deci \( ABCD \) este paralelogram.
Last edited by Mateescu Constantin on Wed Jul 01, 2009 4:43 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Folosim Propozitia: Daca \( O\in(AB) \) astfel incat \( \frac{AO}{OB}=k \) si M e un punct oarecare atunci \( \overline{MO}=\frac{1}{k+1}\overline{MA}+\frac{k}{k+1}\overline{MB} \)
Asadar \( \overline{BP}=\frac{1}{5}\overline{BA}+\frac{4}{5}\overline{BM}=\frac{1}{5}\overline{BA}+\frac{2}{5}\overline{BC} \)(1)
Deasemenea \( \overline{BP}=\frac{2}{5}\overline{BN}=\frac{2}{5}\cdot\frac{1}{2}\(\overline{BC}+\overline{BD}\)=\frac{1}{5}(\overline{BC}+\overline{BD}\) \) (2)
din (1) si (2) rezulta ca \( \overline{BD}=\overline{BA}+\overline{BC} \) adica ABCD este paralelogram.
Asadar \( \overline{BP}=\frac{1}{5}\overline{BA}+\frac{4}{5}\overline{BM}=\frac{1}{5}\overline{BA}+\frac{2}{5}\overline{BC} \)(1)
Deasemenea \( \overline{BP}=\frac{2}{5}\overline{BN}=\frac{2}{5}\cdot\frac{1}{2}\(\overline{BC}+\overline{BD}\)=\frac{1}{5}(\overline{BC}+\overline{BD}\) \) (2)
din (1) si (2) rezulta ca \( \overline{BD}=\overline{BA}+\overline{BC} \) adica ABCD este paralelogram.