Cristian Calude, proba pe echipe, R.III, P.III
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Cristian Calude, proba pe echipe, R.III, P.III
Sa se determine numerele de forma \( \overline{xy} \), pentru care exista cifrele distincte a,b,c, astfel incat sa fie verificata egalitatea: \( \sqrt{\overline{ba}}+\sqrt{ c}+\sqrt{a}=\sqrt{\overline{xy} \)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
\( \overline{xy},\ a,\ b,\ c\in\mathbb{N}\ \Longrightarrow \sqrt{\overline{ba}},\ \sqrt{a},\ \sqrt{c}\in\mathbb{N} \Longrightarrow \overline{ba},\ a,\ c \) sunt patrate perfecte.
\( \overline{ba}\in\{16,\ 25,\ 36,\ 49,\ 64,\ 81\}\ \Longrightarrow a\in\{1,4,5,6,9\} \)
Dar \( a,c\in\{0,1,4,9\} \), deci \( a\in\{1,4,9\} \)
\( a=1\ \Longrightarrow \overline{ba}=81,\ c\in\{0,4,9}\ \Longrightarrow \overline{xy}\in\{10,12,13\} \)
\( a=4\ \Longrightarrow \overline{ba}=64,\ c\in\{0,1,9}\ \Longrightarrow \overline{xy}\in\{10,11,13\} \)
\( a=9\ \Longrightarrow \overline{ba}=49,\ c\in\{0,1}\ \Longrightarrow \overline{xy}\in\{10,11\} \)
In concluzie \( \overline{xy}\in\{10,11,12,13\} \).
\( \overline{ba}\in\{16,\ 25,\ 36,\ 49,\ 64,\ 81\}\ \Longrightarrow a\in\{1,4,5,6,9\} \)
Dar \( a,c\in\{0,1,4,9\} \), deci \( a\in\{1,4,9\} \)
\( a=1\ \Longrightarrow \overline{ba}=81,\ c\in\{0,4,9}\ \Longrightarrow \overline{xy}\in\{10,12,13\} \)
\( a=4\ \Longrightarrow \overline{ba}=64,\ c\in\{0,1,9}\ \Longrightarrow \overline{xy}\in\{10,11,13\} \)
\( a=9\ \Longrightarrow \overline{ba}=49,\ c\in\{0,1}\ \Longrightarrow \overline{xy}\in\{10,11\} \)
In concluzie \( \overline{xy}\in\{10,11,12,13\} \).
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti