Cristian Calude, proba pe echipe, R.III, P.III

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Cristian Calude, proba pe echipe, R.III, P.III

Post by Laurian Filip »

Sa se determine numerele de forma \( \overline{xy} \), pentru care exista cifrele distincte a,b,c, astfel incat sa fie verificata egalitatea: \( \sqrt{\overline{ba}}+\sqrt{ c}+\sqrt{a}=\sqrt{\overline{xy} \)
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

\( \overline{xy},\ a,\ b,\ c\in\mathbb{N}\ \Longrightarrow \sqrt{\overline{ba}},\ \sqrt{a},\ \sqrt{c}\in\mathbb{N} \Longrightarrow \overline{ba},\ a,\ c \) sunt patrate perfecte.

\( \overline{ba}\in\{16,\ 25,\ 36,\ 49,\ 64,\ 81\}\ \Longrightarrow a\in\{1,4,5,6,9\} \)

Dar \( a,c\in\{0,1,4,9\} \), deci \( a\in\{1,4,9\} \)

\( a=1\ \Longrightarrow \overline{ba}=81,\ c\in\{0,4,9}\ \Longrightarrow \overline{xy}\in\{10,12,13\} \)

\( a=4\ \Longrightarrow \overline{ba}=64,\ c\in\{0,1,9}\ \Longrightarrow \overline{xy}\in\{10,11,13\} \)

\( a=9\ \Longrightarrow \overline{ba}=49,\ c\in\{0,1}\ \Longrightarrow \overline{xy}\in\{10,11\} \)

In concluzie \( \overline{xy}\in\{10,11,12,13\} \).
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Cred ca ati uitat un radical caci nicio solutie pe care ati dat-o nu verifica.
n-ar fi rau sa fie bine :)
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

E scris gresit in enunt, pt ca membrul drept al ecuatiei este \( \overline{xy} \)
Post Reply

Return to “Clasa a 8-a”