Divergenta sirului armonic H_{n}=1+1/2+...+1/n

Moderators: Laurian Filip, Cosmin Pohoata

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Divergenta sirului armonic H_{n}=1+1/2+...+1/n

Post by Cezar Lupu »

Sa se arate ca sirul armonic \( H_{n}=1+\frac{1}{2}+\dots +\frac{1}{n} \) este divergent.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Pai nu e sir Cauchy, deci este divergent.
Demostratia este simpla: \( |x_{2n}-x_n|=\frac {1}{n+1}+\frac {1}{n+2}+...+\frac {1}{2n}>n\frac{1}{2n}=\frac{1}{2}. \) In concluzie \( (H_n) \) nu este sir Cauchy, deci este divergent.
cipriancx
Euclid
Posts: 22
Joined: Sun Nov 16, 2008 8:23 pm

Post by cipriancx »

\( H_{n}=1+\frac{1}{2}+\dots +\frac{1}{n}-\ln n=c \), unde c este o constanta (constanta lui Euler parca).
Asadar \( H_{n}=c+ln n \) iar \( c+\ln n \) tinde la infinit, rezulta ca sirul \( (H_{n}) \) este divergent.
Post Reply

Return to “Intrebari teoretice”