O problema draguta de jordanizare

Post Reply
User avatar
Dragos Fratila
Newton
Posts: 313
Joined: Thu Oct 04, 2007 10:04 pm

O problema draguta de jordanizare

Post by Dragos Fratila »

Fie \( m\ge n \) doua numere naturale mai mari decat 1. Consideram urmatoarele matrice \( (nm)\times (nm) \):

\( A = \left(\begin{array}{llll}J_m & 0 & ... & 0\\ 0 & J_m & 0 & ...\\
\vdots\\
0 & 0 & ...& J_m \end{array}\right) \)
si

\( B = \left(\begin{array}{llll}J_n & 0 & ... & 0\\ 0 & J_n & 0 & ...\\
\vdots\\
0 & 0 & ...& J_n \end{array}\right) \)


unde \( J_k \) este matricea \( k\times k \) cu 1 imediat deasupra diagonalei principale si 0 in rest. De exemplu \( J_3 = \left(\begin{array}{lll}0 & 1 & 0\\0 & 0 & 1 \\0&0&0\end{array}\right) \)

Sa se determina descompunerea Jordan (peste numere complexe) a matricei \( A+B \).
"Greu la deal cu boii mici..."
Post Reply

Return to “Algebra liniara”