INEGALITATE BARAJ JUNIORI 2009

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

INEGALITATE BARAJ JUNIORI 2009

Post by maxim bogdan »

Fie \( a,b,c \) numere reale strict pozitive, cu \( a+b+c=3. \) Sa se demonstreze inegalitatea:

\( \frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\geq 3. \)
Feuerbach
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Solutia mea

Post by maxim bogdan »

Avem:

\( \displaystyle\sum_{cyc}\frac{a+3}{3a+bc}=\displaystyle\sum_{cyc}\frac{(a+b)+(a+c)}{(a+b)(a+c)} \)

Introducem notatiile: \( x=a+b;y=b+c;z=c+a. \) Acum vom avea: \( x+y+z=6. \) Inegalitatea se rescrie:

\( \displaystyle\sum_{cyc}\frac{x+y}{xy}=2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 2\cdot\frac{9}{x+y+z}=2\cdot\frac{9}{6}=3. \)

Mai sus am aplicat inegalitatea Cauchy-Schwarz.
Feuerbach
Post Reply

Return to “Inegalitati”