BMO 2009, pb. 1

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

BMO 2009, pb. 1

Post by Claudiu Mindrila »

Rezolvati in numere in numere intregi pozitive ecuatia \( 3^{x}-5^{y}=z^{2}. \)

[BMO 2009, Problema 1]
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( 3^x-5^y=z^2 \)
\( (4-1)^x-(4+1)^y=z^2 \)
Deoarece un p.p. nu poate fi de forma \( M_4+2 \) rezulta ca \( x \) este par. Fie \( x=2k \).

\( 5^y=3^{2k}-z^2 \)
\( 5^y=(3^k-z)(z+3^k) \)

\( \left{ 3^k-z=5^a \\ z+3^k=5^b \\ a+b=y \)
\( 2\cdot 3^k =5^a+5^b \)
cum partea stanga nu este divizibila cu 5 si \( a< b \) rezulta \( a=0 \)

\( z=3^k-1 \)
\( 2\cdot 3^k=5^b+1 \)

Pentru \( k=0 \), obtinem solutia \( (x,y,z)=(0,0,0) \)
Pentru \( k=1 \), obtinem solutia \( (x,y,z)=(2,1,2) \)

Pentru \( k\geq 2 \)
\( (6-1)^b+1\ \vdots \ 6 \) \( \to \) b impar

fie \( b=3c+i, \ i\in \lbrace 0,1,2 \rbrace \)
\( (126-1)^c\cdot 5^i +1=2\cdot 3^k \ \vdots \ 9 \)
Rezulta \( i=0 \) adica \( b\vdots 3 \)

De unde rezulta ca \( 5^b+1 \) este divizibil si cu 7. Cum membrul stang nu este divizibil cu 7, ajungem la concluzia ca pt \( k\geq 2 \) nu gasim alte solutii.


Asadar \( S=\lbrace (0,0,0); (2,1,2) \rbrace \)
Last edited by Laurian Filip on Sun May 03, 2009 4:41 pm, edited 3 times in total.
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

I: \( x=2k+1 \)
1) \( y=0 \)
\( 3^x-z^2=1 \)
\( x=2k+1\Longrightarrow x\neq 0\Longrightarrow 3^x=M_3 \)
\( z^2=M_3,M_3+1\Longrightarrow 1=M_3,M_3+2 \), FALS.
2) \( y\neq 0 \)
\( U(3^x)=3,7(x=2k+1,x\ne 0) \), \( U(5^y)=5\Longrightarrow U(z^2)=2,8 \), FALS.
II: \( x=2k \)
\( (3^k)^2-5^y=z^2\Longrightarrow (3^k-z)(3^k+z)=5^y \)
1) \( 3^k-z=5^a \), \( 3^k+z=5^b \), \( a,b\ne 0 \)
- analizand fiecare caz: \( U(3^k)=3,9,7,1 \) obtinem contradictii
2) \( 3^k-z=5^y \), \( 3^k+z=1 \)\( \Longrightarrow k=0, z=1 \)FALS.
3) \( 3^k-z=1, 3^k+z=5^y \).
a) \( z=0\Longrightarrow x=y=z=0 \).
b) \( z=1 \) contradictie.
c) \( z=2\Longrightarrow x=z=2, y=1 \)
d) \( z>2\Longrightarrow 5^y>5, ZU(5^y)=25 \)
\( 5^y=2z+1\Longrightarrow ZU(2z+1)=25, ZU(z)=12 \)
- dar \( 3^k=z+1\Longrightarrow ZU(3^k)=13 \) FALS, deoarece \( ZU(3^p)=03,43,83,23,63 \) (pentru\( U(3^p)=3 \)).
\( S=\lbrace(0,0,0),(2,1,2)\rbrace \)
Last edited by salazar on Sun May 03, 2009 7:04 pm, edited 6 times in total.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( ZU(3^p)=03,43,83,23 \)(pentru\( U(3^p)=3 \).
Nu stiam de unde vine asta. Am gasit o solutie pt ea, probabil tot la asta te-ai gandit si tu.
\( U(3^p)=3\Longrightarrow p=M_4+1 \)
\( 3^p-3=3^{p-1}-1=(4-1)^{M_4}-1=M_4+1-1=M_4 \)
de unde \( ZU(3^p-3)=00,20,40,60,80 \).

Ai uitat de 63. De exemplu \( 3^{17} \) are ultimele doua cifre 63.
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

Asa e, imi cer scuze.
Eu am calculat si se observa ca dupa un ciclu de 20 de numere ultmele 2 cifre se repeta.
Post Reply

Return to “Teoria Numerelor”