Daca \( a,\ b,\ c\in\mathbb{R}^{*} \) astfel incat \( ab+bc+ca=0 \) atunci
\( \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)\ge a^{2}\left(b-1\right)\left(c-1\right)+b^{2}\left(c-1\right)\left(a-1\right)+c^{2}\left(a-1\right)\left(b-1\right). \)
Claudiu Mindrila
Inegalitate conditionata de ab+bc+ca=0 (OWN)
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata de ab+bc+ca=0 (OWN)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Notam \( x=\frac{1}{a} \) si analoagele..
Inegalitatea devine
\( \frac{(xy+yz+zx)^2}{3}\ge3xyz+xy+yz+zx \) cu \( x+y+z=0 \)
Cazul 1) x>0 ,y>0 ,z<0 evident deoarece xy+yz+zx<0
Cazul 2) x>0 , y<0 , z<0.
Inegalitatea este echivalenta cu \( \frac{(y^2+yz+z^2)^2}{3}\ge -3yz(y+z)+yz-(y+z)^2 \) care este adevarata(demonstrati)
Egalitatea ere loc daca y=z=-1 si x=2.
sau \( b=c=-1 \) si \( a=\frac{1}{2} \)
Inegalitatea devine
\( \frac{(xy+yz+zx)^2}{3}\ge3xyz+xy+yz+zx \) cu \( x+y+z=0 \)
Cazul 1) x>0 ,y>0 ,z<0 evident deoarece xy+yz+zx<0
Cazul 2) x>0 , y<0 , z<0.
Inegalitatea este echivalenta cu \( \frac{(y^2+yz+z^2)^2}{3}\ge -3yz(y+z)+yz-(y+z)^2 \) care este adevarata(demonstrati)
Egalitatea ere loc daca y=z=-1 si x=2.
sau \( b=c=-1 \) si \( a=\frac{1}{2} \)