Inegalitate conditionata de ab+bc+ca=0 (OWN)

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate conditionata de ab+bc+ca=0 (OWN)

Post by Claudiu Mindrila »

Daca \( a,\ b,\ c\in\mathbb{R}^{*} \) astfel incat \( ab+bc+ca=0 \) atunci

\( \frac{4}{3}\left(a^{2}+b^{2}+c^{2}\right)\ge a^{2}\left(b-1\right)\left(c-1\right)+b^{2}\left(c-1\right)\left(a-1\right)+c^{2}\left(a-1\right)\left(b-1\right). \)

Claudiu Mindrila
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( x=\frac{1}{a} \) si analoagele..
Inegalitatea devine

\( \frac{(xy+yz+zx)^2}{3}\ge3xyz+xy+yz+zx \) cu \( x+y+z=0 \)

Cazul 1) x>0 ,y>0 ,z<0 evident deoarece xy+yz+zx<0

Cazul 2) x>0 , y<0 , z<0.

Inegalitatea este echivalenta cu \( \frac{(y^2+yz+z^2)^2}{3}\ge -3yz(y+z)+yz-(y+z)^2 \) care este adevarata(demonstrati)

Egalitatea ere loc daca y=z=-1 si x=2.
sau \( b=c=-1 \) si \( a=\frac{1}{2} \)
Post Reply

Return to “Inegalitati”