Inegalitati cu ranguri

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitati cu ranguri

Post by Marius Mainea »

Fie \( n\ge 2 \) un numar natural, \( A,B\in\mathcal{M}_n(\mathbb{R}) \) si \( S=\{X\in\mathcal{M}_n(\mathbb{R})|X\neq O_n \)si \( \det (X)=0\} \).
Aratati ca :
a) Daca \( rang(AX)\ge rang(XB) \), pentru orice \( X\in S \), atunci \( rang (A)\ge rang (B) \);
b) Daca \( rang (AX)>rang (XB) \), pentru orice \( X\in S \), atunci \( B=O_n \) si \( A \) este inversabila.

M. Ghergu
Post Reply

Return to “Algebra”