Concursul interjudetean de matematica ''Marian Tarina'' p. I

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Concursul interjudetean de matematica ''Marian Tarina'' p. I

Post by alex2008 »

Sa se arate ca pentru orice \( n\in \mathb{N}* \) numarul \( 25^n \) se poate scrie ca suma de doua patrate perfecte .

Indicatie : \( 25^n=25^{n-1}\cdot 25 \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

Distingem 2 cazuri:
n=2k+1:\( 25^{2k+1} \)\( =25^2^k \)\( \cdot \)\( 25= \)\( 25^2^k\cdot \)\( (4^2+3^2) \)\( =(4\cdot \)\( 25^k)^2 \)\( +(3\cdot \)\( 25^k)^2 \)
n=2k: \( 25^2^k \)\( =25^2^{k-2} \)\( \cdot \)\( 25^2 \)\( =25^2^{k-2} \)\( \cdot \)\( (24^2+7^2) \)\( =(24\cdot \)\( 25^{k-1})^2 \)\( +(7\cdot \)\( 25^{k-1})^2 \), unde \( k\geq \)\( 1 \), deoarece \( n\in\mathb{N}* \).
Last edited by Andi Brojbeanu on Sun Dec 06, 2009 2:31 pm, edited 1 time in total.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( 25^n=25\cdot 25^{n-1}=(9+16)\cdot 25^{n-1}=(3\cdot 5^{n-1})^2+(4\cdot 5^{n-1})^2 \).
Post Reply

Return to “Clasa a 8-a”