Maraton de probleme de clasa a V-a - semestrul I

mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( 5^{n+1}=(5^n-2)+(5^n-1)+(5^n)+(5^n+1)+(5^n+2) \)
n-ar fi rau sa fie bine :)
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Sunteti clasa a V-a sau a VI-a ? :? Nici n-ati lasat elevii mai mici sa se gandeasca :( Stiu ca pentru dumneavoastra e floare la ureche dar macar mai postati o problema ca sa nu se rupa firul si sa nu stea elevii de clasa V-a degeaba . :)
Humuhumunukunukuapua
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

Problema 26

Fie \( P=1\cdot 2\cdot 3\cdot .... \cdot 2008 \). Daca din P se elimina toate numerele pare si cele care au ultima cifra 5, sa se determine ultima cifra a produsului numerelor ramase.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

cred ca in 9 se termina, dar nu mai postez solutie ca sa nu se supere nimeni:P
n-ar fi rau sa fie bine :)
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Nu m-am suparat , dar aici eu cred ca produsul se termina in 1 .
Humuhumunukunukuapua
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( U(P)=U((1\cdot3\cdot7\cdot9)^{199}\cdot 1\cdot3\cdot7)=U(9^{199})=9 \)
n-ar fi rau sa fie bine :)
Luiza
Euclid
Posts: 18
Joined: Thu Dec 18, 2008 7:39 pm
Location: Cehu Silvaniei , Salaj

Post by Luiza »

Nu e la puterea 200 ? :?
Humuhumunukunukuapua
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Problema 27

Aratati ca numarul \( 3n+2 \) nu este patrat perfect pentru orice \( n\in \mathbb{N} \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Tudor_C
Arhimede
Posts: 8
Joined: Sun Mar 08, 2009 7:39 pm

Post by Tudor_C »

\( (3k)^2 = 9k^2= M_3 \)
\( (3k+1)^2= 9k^2+ 1+2\cdot3k\cdot1=M3 +1 \)
\( (3k+2)^2=9k^2+4+2\cdot3k\cdot2=M3+1 \)

Deci nu putem avea patrate perfecte de forma 3k+2
User avatar
Tudor_C
Arhimede
Posts: 8
Joined: Sun Mar 08, 2009 7:39 pm

Post by Tudor_C »

Prob. 28:
Determinati nr naturale \( \overline{ab} \) cu proprietatea ca \( a+2b|\overline{ab} \)
Post Reply

Return to “Clasa a 5-a”