Fie ecuatia : \( 4mx^2+4(1-2m)x+3(m-1)=0 \) . Sa se determine valorile lui m , astfel incat sa avem :
a) ambele radacini mai mici decat 1.
b) ambele radacini mai mari ca 1.
c) o radacina mai mare decat 1 si alta mai mica decat 1.
Pozitia radacinilor fata de o valoare
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Studiul pozitiei relative a radacinilor reale \( x_1 , x_2 \) ale ecuatiei \( ax^2+bx+c=0\ ,\ a\ne 0 \) fata de \( \alpha\in\mathbb R \)
impune studiul semnului pentru expresiile \( \Delta \) (discriminant) , \( af(\alpha ) \) si \( S-2\alpha \) , unde \( S=x_1+x_2=-\frac ba \) .
\( \underline{\overline{\overline {\underline{\begin{array}{||c|c|c||c|}
\Delta & af(\alpha ) & S-2\alpha & \mathrm {Pozitia\ radacinilor\ reale\ fata\ de\ }\alpha\\\\
== & === & ==== & ====================\\\\\\
+ & + & + & \alpha\ <\ x_1\ <\ x_2\\\\
+ & + & - & x_1\ <\ x_2\ <\ \alpha\\\\
+ & 0 & + & \alpha\ =\ x_1\ <\ x_2\\\\
+ & 0 & - & \ x_1\ <\ x_2\ =\ \alpha\\\\
+ & - & \box & x_1\ <\ \alpha\ <\ x_2\\\\
0 & + & + & \alpha \ <\ x_1\ =\ x_2\\\\
0 & + & - & x_1\ =\ x_2\ <\ \alpha\\\\
0 & 0 & 0 & x_1\ =\ x_2\ =\ \alpha\\\\
- & \box & \box & x_1\ ,\ x_2\ \not\in\ \mathbb R\\\\
\end{array}}}}} \)
"In general nu strica putina teorie in plus, aici insa merge mai simplu" (prof. Mihai Miculita).
impune studiul semnului pentru expresiile \( \Delta \) (discriminant) , \( af(\alpha ) \) si \( S-2\alpha \) , unde \( S=x_1+x_2=-\frac ba \) .
\( \underline{\overline{\overline {\underline{\begin{array}{||c|c|c||c|}
\Delta & af(\alpha ) & S-2\alpha & \mathrm {Pozitia\ radacinilor\ reale\ fata\ de\ }\alpha\\\\
== & === & ==== & ====================\\\\\\
+ & + & + & \alpha\ <\ x_1\ <\ x_2\\\\
+ & + & - & x_1\ <\ x_2\ <\ \alpha\\\\
+ & 0 & + & \alpha\ =\ x_1\ <\ x_2\\\\
+ & 0 & - & \ x_1\ <\ x_2\ =\ \alpha\\\\
+ & - & \box & x_1\ <\ \alpha\ <\ x_2\\\\
0 & + & + & \alpha \ <\ x_1\ =\ x_2\\\\
0 & + & - & x_1\ =\ x_2\ <\ \alpha\\\\
0 & 0 & 0 & x_1\ =\ x_2\ =\ \alpha\\\\
- & \box & \box & x_1\ ,\ x_2\ \not\in\ \mathbb R\\\\
\end{array}}}}} \)
"In general nu strica putina teorie in plus, aici insa merge mai simplu" (prof. Mihai Miculita).