Etapa judeteana Gorj

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Etapa judeteana Gorj

Post by alex2008 »

Fie numerele : \( a=2^{n+1}\cdot5^n+1 \) , \( b=2^n\cdot5^{n+1}+1 \) , \( c=2^{n+3}\cdot5^n+7 \) , \( d=2^{n+1}\cdot5^{n+3}-1 \) , unde \( n \in \mathb{N} \) . Aratati ca :
a)\( a ,b ,c ,d \) nu sunt prime .
b)\( \frac{7d+c}{b-a} \in \mathb{N} \)
c)c poate fi patrat perfect . Justificati .
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

a) a,b,c,d sunt divizibile cu 3 (congruente modulo 3)
b) \( \frac {7d+c}{b-a} = 560 \)
c) Ultima cifra a lui c este 7, asadar c nu poate fi patrat perfect.
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

la punctul c) avem
Daca \( n\ge 1\Rightarrow c=10\cdot 2^{n+2}5^{n-1}+7\Rightarrow u(c)=7\Rightarrow \) c nu poate fi patrat perfect.
Daca n=0 avem ca \( c=8+7=15 \) care nu este patrat perfect.
cred ca la punctul c este: c nu este p.p.
Post Reply

Return to “Clasa a V-a”