Spatiu prehilbertian real si module egale

Moderator: Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Spatiu prehilbertian real si module egale

Post by Cezar Lupu »

Fie \( X \) un spatiu prehilbertian real si \( x_{1}, x_{2}\in X
\)
. Sa se arate ca \( ||x_{1}||=||x_{2}|| \) daca si numai daca
\( ||ax_{1}+(1-a)x_{2}||\geq\frac{1}{2}||x_{1}+x_{2}||, \forall a\in (0,1) \).

Dan Marinescu, Viorel Cornea, G.M.A. 2006
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza functionala si teorie spectrala”